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Speckle reduction of SAR images using ICA basis
enhancement and separation
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An approach for synthetic aperture radar (SAR) image de-noising based on independent component anal-
ysis (ICA) basis images is proposed. Firstly, the basis images and the code matrix of the original image
are obtained using ICA algorithm. Then, pointwise Hölder exponent of each basis is computed as a cost
criterion for basis enhancement, and then the enhanced basis images are classified into two sets according
to a separation rule which separates the clean basis from the original basis. After these key procedures
for speckle reduction, the clean image is finally obtained by reconstruction on the clean basis and original
code matrix. The reconstructed image shows better visual perception and image quality compared with
those obtained by other traditional techniques.

OCIS codes: 100.0100, 030.6140, 280.6730, 350.4600.

Synthetic aperture radar (SAR) sensors can produce
range imagery of high spatial resolution under different
conditions. However, the images suffer from the effects
of speckle noise. Thus, speckle reduction is a key step
for desirable image quality. For this application, Lee de-
veloped a linear approximation filter based on the min-
imum mean-square error (MMSE) criterion in 1980[1],
and Kuan presented a generalized filter of Lee’s in
1985[2]. Wavelet thresholding shrinkage was proposed in
1995[3]. Taking advantage of the excellent performance
of independent component analysis (ICA), a method
namely sparse code shrinkage was proposed as a novel
improvement[4]. However, conventional algorithms lack
consideration on the basis information obtained by in-
dependent component analysis (ICA)[5], which usually
contains substantial knowledge for our denoising work.
Based on extensive study on these meaningful basis, we
propose a novel theory for SAR image dispeckling in this
paper. The proposed method contains two key proce-
dures, basis enhancement and basis separation. As to the
former, we extend the signal enhancement algorithm by
Vehel[6] for image application and use pointwise Hölder
exponent as a criterion for basis enhancement; as to the
latter, based on the proposed separation theory and sep-
aration rule, we further classify the enhanced basis into
two types respectively called ‘clean’ basis and ‘noise’ ba-
sis, which belong to corresponding subspaces, ‘clean’ and
‘noise’. After these procedures, the clean image is ob-
tained by reconstruction on the clean basis.

ICA is a statistical method for transforming an ob-
served multi-dimensional random vector into components
that are mutually independent. Denoted by X the ob-
served matrix: X = {x1, x2, x3, · · · , xm}T, by S the in-
dependent components matrix (or sparse code matrix):
S = {s1, s2, s3, · · · , sn}T, and by A(m × n, m > n) the
mixed matrix, the linear representation can be given by

X = AS or S = WX, (1)

where xi (i = 1, · · · , m) is the observed signal and si

(i = 1, · · · , n) is the independent component, W namely
demixed matrix or transformation matrix is the pseudo
inverse of A, that is W = A+. In the following content,

we replace xi, si with x, s for short.
The independent components in ICA are obtained by

maximizing non-Gaussianity measure, which is equiva-
lent to searching for sparse representation. Thus, ICA
gives sparse codes for natural images. According to
sparse coding theory[4], the localized and compact dis-
tribution of energy in images suggests that they have a
“sparse structure”, which means any image can be repre-
sented by a relatively small number of descriptors out of
a much larger set to choose from. Thus, an image I(x, y)
can be modelled as a linear superposition of basis φk,
which can be defined as

I(x, y) = [
∑

k

sk,bφk], k = 1, · · · , n, (2)

where sk,b is the element of code matrix S at row k, col-
umn b. And φk is the kth column vector of mixed matrix
A = [φ1, · · · , φk, · · · , φn].

If we use symbol ‘↔’ to define the mapping associa-
tion between a basis and the corresponding independent
component, we obtain sk ↔ φk, k = 1, · · · , n.

Measuring the local smoothness of functions is proved
to be an important task for many applications in mathe-
matical analysis and in signal and image processing. Such
a characterization is vital in multi-fractal analysis, and
is an instrumental tool for image segmentation and de-
noising. Hölder exponent is considered as a powerful pa-
rameter for studying the structure of singular signals[7].

Let α ∈ (0, 1), and x0 ∈ K ⊂ R. A function f : K → R
is in Cα

x0
(or has a pointwise Hölder exponent α at x0),

if for all in a neighborhood x of x0,

|f(x) − f(x0)| ≤ c |x − x0|α , (3)

where c is a constant independent of x0 and α. The
Hölder exponent α is computed as

αf (x) = lim inf
h→0

log |f(x + h) − f(x)|
log |h| . (4)

Clearly, a function that is differentiable at x = x0 has
a Hölder exponent α ≥ 1. Geometrically, this means that
the magnitude of oscillations of the function near x0 de-
creases faster than the distance to x. In general, if this
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inequality holds for α0, then it will hold for all α ≤ α0.
Thus, the Hölder exponent of a function is the upper
bound of α. For images, this exponent characterizes the
edges and the features.

Suppose we have obtained the sparse description of the
observed matrix X , X = AS. According to the above
analysis, we have A = [φ1, · · · , φk], where φ is a vec-
tor namely basis vector corresponding to its basis image
ϕ. So, we derive from the ICA sparse coding that in-
put image can be spanned by the basis and each basis
corresponds to its independent component which has a
‘sparse’ distribution. With the basis images enhanced or
smoothed, the original image can get recovery with speck-
les reduced. Therefore, our first key step is focused on
basis image enhancement. Vehel developed an algorithm
for signal enhancement based on Hölder regularity[6], we
now extend and apply this approach to image process-
ing.

Consider the basis image to be full of singularity or
nonsingularity characteristics. Based on the multi-fractal
theory[7], unorderly distributed points represent points
with nonregular nonsingularity, meaningful context rep-
resents singularity, and background represents regular
nonsingularity. For image smoothing and enhancement,
the key is to decrease the nonregular nonsingularity
which is equivalent to retaining points with singularity
or with regular nonsingularity. This means singularity
of every pixel should be increased to different extent or
be regulated to be more uniform. Wavelet theory[8] and
2-microlocal analysis[9] are used for this procedure. Spe-
cially, wavelet is applied for the regulation of coefficients
based on its multi-scale property, and 2-microlocal is
used to define the regulating correlation between wavelet
coefficients and Hölder exponent.

Firstly, ‘Harr’ wavelet which has an orthonormal
wavelet basis is used to decompose each basis image and
the computed coefficients are denoted by cj

k, where as
usual j denotes scale and k position.

Next, we shall modify wavelet coefficients with the de-
sired Hölder exponent α, then reconstruct the enhanced
image from them. According to 2-microlocal analysis, we
can define this regulating correlation as

cj
k → cj

k × 2−j(Δα), (5)

where, Δα = α∗ − α, α∗ must be adjusted in particu-
lar experiment. Too large value of α∗ results in over-
smoothness, and too small value lacks intensity of en-
hancement. Optimal tradeoff can be achieved when α∗
lies between 2.95 and 3.0.

Basis enhancement verifies that ‘noise’ part can be
merged into the ‘clean’ part, forming approximately uni-
form singularitiy, but the internal characteristics of both
‘noise’ and ‘clean’ are not differentiated clearly. For su-
perior image quality, the second key procedure, enhanced
basis images separation is necessary.

Suppose we have obtained X = AS using ICA tech-
nique and the basis images have been enhanced with the
first key step mentioned above. From the view of sig-
nal separation, we believe that ‘noise pattern’ in the im-
age comes from another kind of signal source which is
different from the ‘clean’ signal ones. Therefore, an orig-
inal image space can be separated into two subspaces. If
we can separate the original one into these two subspaces

using some criterion, we can effectively obtain the clean
version extracted from the original image by reconstruc-
tion on the clean subspace. Let us denote the original im-
age space by Sorigin, ‘clean’ subspace by Sclean, and ‘noise’
subspace by Snoise, we obtain Sorigin = Sclean + Snoise,
which is equivalent to Xorigin = Xclean + Xnoise. Because
each space comprises basis images and corresponding in-
dependent components, separating basis implies separa-
tion of space.

The proposed principle on separation and reconstruc-
tion is shown in Fig. 1 for clear demonstration.

Clearly, the core is how to separate two subspaces from
the original one. We define the separation rule as{

1
N ‖si‖1 > θ · 1

n ‖S‖∞ ⇒ si ∈ Sclean and φi ∈ Sclean,
1
N ‖si‖1 < θ · 1

n ‖S‖∞ ⇒ si ∈ Snoise and φi ∈ Snoise,

(6)

For more clarity, the formula (6) can be written as
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
N

∑
j

|Sij | > θ · 1
n max

1≤i≤n

N∑
j=1

|Sij | ⇒
si ∈ Sclean and φi ∈ Sclean,

1
N

∑
j

|Sij | < θ · 1
n max

1≤i≤n

N∑
j=1

|Sij | ⇒
si ∈ Snoise and φi ∈ Snoise,

(7)

where i = 1, · · · , n, n is the number of components, si

is the ith component, φi is the ith basis with relation
φi ↔ si, N is the number of sample points of each
component, θ · 1

n ‖S‖∞ is the separation threshold with
θ ∈ (0, 1) which can be easily set in particular experi-
ment.

Steps of the proposed algorithm are as follows.
1) Use a sliding window (size = 16 × 16) to sample

the original image regularly, ensuring that each sampled
block has an interval step of 8 pixels both in row and in
column. Then, we obtain the observed matrix X with
each row-vector as an observed signal. For example, if an
image is 256× 256 in size, the observed matrix X should
be 256 × 961 by this kind of sampling.

2) To avoid huge computation complexity, we subtract

Fig. 1. Proposed principle for separation of basis images.
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the mean of each signal and then apply principal compo-
nent analysis (PCA) to reduce dimension of the vectors
to 64, which implies 64 basis images we shall have.

3) The preprocessed X is used as the input to fast ICA
algorithm[10], with ‘tanh’ nonlinearity.

4) The 64 basis images from A and the corresponding
independent components from S are obtained after con-
vergence of fast ICA algorithm.

5) The pointwise Hölder exponent for each of these ba-
sis images is computed.

6) Based on the Hölder exponent, enhancement of the
basis images is performed (supposing the enhanced basis

corresponds to
�

A1).
7) Enhanced basis images are separated into two types:

‘clean’ and ‘noise’ (supposing similarly the enhanced-

clean basis corresponds to
�

A2).

8) According to
�

X =
�

A2S, the recovery result is ob-
tained.

9) Compare the result with those by other conventional
algorithms, and the ratio of standard deviation to mean
(SD/M) is calculated for each image. SD/M, indicative
of de-noising quality, is defined as

SD/M =

1
Z−1

√∑
Ω

[I(x, y) − 1
Z

∑
Ω

I(x, y)]2

1
Z

∑
Ω

I(x, y)
, (8)

where I(x, y) is the gray value of each pixel of an image
Ω, Z is the number of pixels. Generally, lower value of
SD/M implies less noise and better image quality.

We performed experiment on a single-look 256 × 256,
gray-scale SAR image shown in Fig. 2. Figure 3(a)
shows the basis (64 images, each 16 × 16) obtained by
ICA, Figs. 3(b) and (c) show the pointwise Hölder expo-
nent of each basis and the enhanced basis. Figure 4 gives
the separation result (29 bases of ‘noise’ pattern, and 35
bases of ‘clean’ pattern) of enhanced basis images, with
θ = 0.35. The recovery result with the proposed method
is shown in Fig. 5. For comparison, we also give the
recovery results by other conventional methods in Fig. 6.
We further calculated the SD/M of related images for
ratio comparison, the results are shown in Table 1. We
denote this experiment by ‘EX1’ in the table.

For fourther validation, we apply the proposed algo-
rithm to two other SAR images shown in Figs. 7(a) and
(c). The recovery results using the proposed algorithm
are shown in Figs. 7(b) and (d), showing superior de-
noising performance, with θ = 0.4 and θ = 0.3. Because

Fig. 2. Original image.

Fig. 3. (a) Basis images (64); (b) Hölder exponent of the
basis images (64); (c) enhanced basis images (64).

Fig. 4. (a) 29 ‘noise’ basis images with θ = 0.35; (b) 35 ‘clean’
basis images with θ = 0.35.

Fig. 5. Recovery result with the proposed method.

Fig. 6. Recovery results by (a) ‘Wiener’ filtering, (b) wavelet
thresholding shrinkage, and (c) sparse coding shrinkage.
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Table 1. SD/M Comparison

Algorithm SAR Image Wiener Wavelet Sparse Coding Proposed

EX1 0.7817 0.7261 0.6624 0.6459 0.4325

EX2 0.8017 0.7856 0.6563 0.6102 0.5118

EX3 0.4020 0.4005 0.3596 0.3259 0.2624

Fig. 7. (a),(c) Original images SAR 1 and SAR 2; (b),(d)
recovery results with the proposed method.

of content limit, recovery results with other conventional
methods are not provided in this paper, but SD/M ratios
were still calculated for comparison, as also shown in Ta-
ble 1. Similarly, we denote these two examples by ‘EX2’
and ‘EX3’.

In conclusions, based on the basis information from
ICA technique, a novel speckle filtering algorithm is de-
veloped using basis enhancement and separation. The
recovery image obtained by this method achieves a better
visual perception, which is also illustrated by the lower
value of SD/M of the reconstructed image.
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